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Roles of miR-210 in the pathogenesis of pre-eclampsia

Jiyun Li, Guimei Wu, Yanmin Cao, Zhi Hou

A b s t r a c t

Introduction: This study aimed to explore the bio-function of miR-210 in the 
pathogenesis of pre-eclampsia and provide new insights into the diagnosis 
and treatment of pre-eclampsia.
Material and methods: A JAR cell line cultured in standard or hypoxic condi-
tions was used in this study. Expression levels of miR-210 and PTPN2 were 
determined using real-time polymerase chain reaction (RT-PCR). Protein and 
phosphorylation levels were assessed using western blotting. Proliferation 
of JAR cells was evaluated using MTT assay. Migration and invasion were 
measured using transwell assay.
Results: Expression of miR-210 increased significantly in a time-dependent 
manner after hypoxia treatment within 36 h (p < 0.05). miR-210 inhibitor sig-
nificantly decreased the cell proliferation, migration, and invasion (p < 0.05), 
while miR-210 mimic reversed these findings (p < 0.05). Hypoxia significantly 
suppressed the expression of PTPN2; however, this elevation was abolished 
by miR-210 inhibitor (p < 0.05). Inhibition of PTPN2 or hypoxia significantly 
increased the proliferation, migration, and invasion of JAR cells, while miR-
210 inhibitor significantly reversed these changes (p < 0.05). The phosphor-
ylation levels of PDGFR, Akt, and Erk were markedly upregulated by hypoxia 
or si-PTPN2, but this effect was abolished by miR-210 inhibitor (p < 0.05).
Conclusions: miR-210 can promote proliferation, migration, and invasion via 
downregulating PTPN2 in the PDGFR-Akt pathway.
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Introduction

Pre-eclampsia (PE) is a  leading cause of maternal and morbidity 
worldwide [1]. This disease, which is characterized by proteinuria and 
hypertension, usually occurs at about 32 weeks of gestation [2]. It is es-
timated that approximately 2–8% of pregnant women suffer from PE [3, 
4]. Several risk factors contribute to the pathogenesis of PE, including 
pregnancy age, times, hypertension, anemia, overweight/obesity, urinary 
tract infection, and hereditary factors [5, 6]. Despite the progress in the 
diagnosis and treatments, the current interventions are insufficient to 
achieve improving effects on the prevention and treatment of PE, as well 
as its complications [7]. Therefore, it is important to explore the mecha-
nism of PE for further understanding.

A recent study revealed that failure in the vascular remodeling of the 
maternal spiral arteries is the main pathogenesis of PE, which leads to 
hypoperfusion of the placenta [8]. Specifically, trophoblast invasion is the 
one of the most important contributors to failure in vascular remodeling 
[9]. Hunkapiller et al. documented that the Notch signaling pathway plays 
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a  critical role in the endovascular invasion of the 
trophoblasts [10]. Since micoRNAs (miRNAs) have 
been demonstrated as therapeutic targets, they 
could be used as biomarkers in various diseases 
[11, 12]. Moreover, they are also reported to play 
critical roles in the regulation of trophoblast inva-
sion, which participates in the pathogenesis of PE. Li  
et al. revealed that miR-29b promotes PE via reg-
ulating the apoptosis and invasion of trophoblasts 
[13]. Meanwhile, miR-16 suppresses the prolifera-
tion of mesenchymal stem cells in severe PE [14], 
miR-126 is downregulated in placentas of PE pa-
tients, and miR-126 correlates with the decreased 
expression of vascular endothelial growth factor 
(VEGF) [15]. Therefore, miRNAs might play critical 
roles in the regulation of PE pathogenesis.

In order to further explore the potential mecha-
nism of miRNAs in PE, the bio-function of miR-210 
and its downstream target were investigated, as 
well as the potentially involved pathway, so that 
some useful information could be provided for the 
diagnosis and treatment of PE.

Material and methods

Cell culture

The human placental choriocarcinoma cell line 
JAR was purchased from American Type Culture 
Collection (ATCC, Manassas, VA, USA) to explore 
the functions of trophoblastic cells. JAR cells were 
maintained in 1640 medium supplemented with 
10% fetal bovine serum, 6 mM glutamine, 20 mM 
HEPES, 100 μg streptomycin and 100 IU penicillin 
at 37°C with a humidified atmosphere of 5% CO2. 
For hypoxia treatment, cells were maintained at 
37°C with a  humidified atmosphere of 5% CO2, 
2% O2 and balanced N2.

Cell transfection

For knockdown of PTPN2 in JAR cells, short 
hairpin RNA targeting PTPN2 (sequence: GAAGAT-
GTGAAGTCGTATTAT) or a  control (sequence:  
5′-AAAGAAATGTCCTACCTTCT-3′) was inserted into  
the plKO.1 vector to construct the shPTPN2 or 
control plasmid. Then, JAR cells were seeded in 
a 6-well plate with complete medium, and miR-210 
inhibitor (purchased from GE Health Dharmacon, 
Waltham, MA, USA), miR-210 mimic (purchased 
from GE Health Dharmacon, USA), si-PTPN2 and 
si-PTPN2 control were respectively transfected into 
JAR cells using Lipofectamine 2000 (Invitrogen, 
USA) following the manufacturer’s protocol on the 
second day. After transfection for more than 48 h, 
cells were used for the following experiments.

MTT assay

The JAR cells with different transfections 
were seeded on a 96-well plate. After culture for  

24 and 48 h, 200 μl of 5 mg/ml MTT (Sigma, St 
Louis, MO, USA) was added into each well at 37°C 
for 4 h. Then the medium was discarded and re-
placed with dimethyl sulfoxide. After shaking for 
10 min, the absorbance of each well at 540 nm 
was determined using a microtiter plate reader.

Matrigel invasion assay

The JAR cells (5 × 105) with different expression 
levels of miR-210 or PTPN2 were plated in 1640 
medium without FBS in the upper chamber of 
a  transwell (Corning, Somerset, NJ, USA) coated 
with Matrigel (BD, MA, USA). Complete growth 
medium was added to the lower chambers. Then 
the plate was incubated in standard culture con-
ditions (21% O2) or hypoxic conditions (2% O2) at 
37°C for 72 h. Following this, cells on the upper 
chamber were removed with a cotton swab, and 
cells on the underside were stained with hema-
toxylin (Sigma). For each sample, 5 views were 
randomly selected and quantified, and the mean 
value was computed. Each experiment was per-
formed in triplicate, and the mean value was cal-
culated as the final result.

Transwell assay

Similarly, for the Matrigel assay, 5 × 105 JAR 
cells with different expression levels of miR-210 
or PTPN2 were separately seeded in 1640 medium 
without FBS in the upper chamber of a transwell 
(Corning). Then, the lower chamber was filled with 
complete growth medium (1640 medium with 
FBS). Next, the plate was cultured in standard 
conditions (21% O2) or hypoxic conditions (2% O2) 
at 37°C for 72 h. Subsequently, cells on the upper 
chamber were scraped with a  cotton swab, and 
on the other side were stained with hematoxylin 
(Sigma). For each sample, 5 views were randomly 
selected and qualified, and the mean value was 
obtained as the final result of the sample. Each 
experiment was performed in triplicate, and the 
mean value was calculated as the final result.

Quantitative real-time PCR (qRT-PCR)

After culture or treatment, medium of JAR 
cells was completely removed, and 1 ml of Trizol 
agent (Invitrogen) was added to isolate total RNA 
according to the manufacturer’s protocol. After 
quantification  using a NanoDrop spectrophotom-
eter (NanoDrop Technologies, Oxfordshire, UK),  
2 μg of total RNA was used for mRNA reverse tran-
scription using the high-capacity cDNA Reverse 
Transcription kit (Applied Biosystems, lnc., Foster 
City, CA, USA) according to its specific instructions. 
Meanwhile, 2 μg of total RNA was used for miRNA  
reverse transcription using the TaqMan miRNA 
Reverse Transcription Kit (Applied Biosystems, 



Roles of miR-210 in the pathogenesis of pre-eclampsia

Arch Med Sci 1, January / 2019 185

lnc., Foster City, CA, USA). Then, the expression 
levels of the gene and miRNA were determined on 
an ABI PRISM 7900HT PCR system (Applied Bio-
systems, Foster City, CA, USA) with the following 
system: for the quantification, GAPDH was used 
to normalize mRNA, and U6 was used to nor-
malize miRNA. Primers of miR-210 and PTPN2 
were designed as follows: miR-210-forward,  
5′-GTGCAGGGTCCGAGGT-3′, and miR-210-reverse: 
5′-CTGTGCGTGTGACAGCGGCTGA-3′; U6-forward, 
5′-CTCGCTTCGGCAGCACA-3′, and U6-reverse, 
5′-AACGCTTCACGAATTTGCGT-3′; PTPN2-forward, 
5′-TTCCTCTGAACCCCAAACTG-3′ and PTPN2-re-
verse, 5′-GCCTCCAAAAACAAATCCTG-3′; and GAP-
DH-forward, 5′-CGAGATCCCTCCAAAATCAA-3′ and 
GAPDH-reverse, 5′-TGTGGTCATGAGTCCTTCCA-3′. 
Then, the fold changes of genes and miRNA were 
calculated using the 2–ΔΔCt method [16]. Each sam-
ple was analyzed in triplicate, and the mean value 
was set as the final expression value.

Western blotting

Protein lysates from each cell sample were col-
lected, quantified with the Bradford assay, and 
boiled with loading buffer for 10 min. A  total of 
10 μg of protein was used to run in 10% or 12% 
SDS-PAGE gel, and transferred electrophoretically 
to a  PVDF membrane using a  standard method. 
After blocking with skimmed milk, membrane was 
incubated with rabbit anti-PTPN2 (1 : 1000), rab-
bit anti-PDGFR (1 : 2000), p-PDGFR (1 : 1000), Akt 
(1 : 3000), p-Akt (1 : 2000), Erk (1 : 3000), p-Erk  
(1 : 3000), or GAPDH (1 : 5000) purchased from 
Cell Signaling Technology (Denvers, MA, USA), 
then incubated with secondary rabbit antibodies 
(1 : 10000, Cell Signaling Technology), and visual-
ized using the enhanced chemical luminescence 
method.

Statistical analysis

In the current study, SPSS 20.0 software (IBM, 
SPSS, Chicago, IL, USA) was used to perform statis-
tical analysis. Continuous variables were present-
ed as mean ± standard deviation. Comparisons 
between groups were estimated using Student’s 
t-test, and p < 0.05 was considered statistically 
significant. 

Results

Hypoxia induces expression of miR-210  
in JAR cells

To investigate the bio-function of miR-210, JAR 
cells were cultured in standard conditions with 
21% O2 and hypoxic conditions with 2% O2. The re-
sults showed that the mRNA level of miR-210 sig-
nificantly increased in a time-dependent manner 
within 48 h under hypoxic conditions compared 

with the control group (Figure 1), indicating that 
miR-210 was involved in the response to hypoxia.

miR-210 promotes the cell viability, 
migration and invasion of JAR cells

For further analysis, miR-210 control, mimic 
and inhibitor were separately transfected into JAR 
cells, and the efficacy was determined using RT-
PCR (Figure 2 A). Then, cell viability was measured 
using MTT, and the result showed that compared 
with the control group, miR-210 mimic significant-
ly increased the viability of JAR cells, while miR-
210 inhibitor markedly decreased cell viability of 
JAR cells (Figure 2 B). Similar tendencies were also 
identified in the migration and invasion of JAR 
cells (Figures 2 C, D). These findings indicated that 
miR-210 could increase cell viability and promote 
migration and invasion of JAR cells.

PTPN2 is a downstream target of miR-210

PTPN2 has been reported to be a target of miR-
210 [17]. In the present study, shRNA was used to 
inhibit the expression of PTPN2 in JAR cells. Mean-
while, JAR cells were transfected with miR-210 in-
hibitor or treated with hypoxia to assess the cor-
relation between miR-210 and PTPN2. Then, the 
expression levels of PTPN2 were measured using 
RT-PCR and Western blotting. As shown in Figure 3, 
both si-PTPN2 and hypoxia significantly decreased 
the expression of PTPN2, while miR-210 inhibitor 
prevented this elevation. These findings indicat-
ed that PTPN2 might be a target of miR-210, and 
inhibiting the expression of miR-210 could signifi-
cantly increase the expression of PTPN2.

PTPN2 suppresses the proliferation, 
migration and invasion of JAR cells

Effects of PTPN2 on cell proliferation, migration, 
and invasion were investigated. Both si-PTPN2 

 Normoxia          Hypoxia

Figure 1. Expression of miR-210 under hypoxia de-
termined using real-time PCR. Compared with the 
control group, **p < 0.01
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and hypoxia significantly increased cell prolifera-
tion, and promoted cell migration and invasion of 
JAR cells, while miR-210 inhibitor reversed these 
effects of hypoxia and si-PTPN2 (Figure 4). 

Pathway of miR-210-PTPN2 involvement

To explore the potential signaling pathway of 
miR-210-PTPN2 involved in the current study, the 
expression and phosphorylation levels of PDGFR, 
Akt, and ERK were determined by Western blot-
ting (Figure 5 A). The quantification of phosphor-
ylation showed that si-PTPN2 and hypoxia treat-

ment significantly increased the phosphorylation 
levels of PDGFR (Figure 5 B), Akt (Figure 5 C), and 
ERK (Figure 5 D) compared with the control group, 
and miR-210 reversed these outcomes, with no 
significant changes in these levels. These findings 
indicated that miR-210-PTPN2 might regulate the 
cell proliferation, migration and invasion via the 
PDGFR-Akt signaling pathway.

Discussion

In the current study, the bio-function of miR-210 
and its potential target were revealed in JAR cells. 

Figure 2. Effect of miR-210 on the proliferation, migration, and invasion of JAR cells. A – Expression of miR-210 
determined using real-time PCR, B – cell proliferation determined using MTT, C – cell migration assessed using 
transwell assay, D – cell invasion estimated using Matrigel assay. Compared with the control group, **p < 0.01
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After investigation, miR-210 expression increased 
significantly under hypoxia. Overexpression of 
miR-210 obviously promoted the cell proliferation, 

metastasis and invasion of JAR cells, and PTPN2, 
a target of miR-210, significantly attenuated these 
elevations via the PDGFR-Akt signaling pathway.

Figure 3. Expression of PTPN2 in cells with different treatment. A – mRNA expression of PTPN2 determined using 
real-time PCR, B – protein expression of PTPN2 using western blotting

Compared with the control group, **p < 0.01; compared with hypoxia + miR-210 inhibitor, ##p < 0.01.
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Compared with the control group, *p < 0.05 and **p < 0.01; compared with hypoxia + miR-210 inhibitor, ##p < 0.01.
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Among hypoxia-regulated miRNA, miR-210 has 
been reported to be involved in several diseas-
es. Grosso et al. documented that miR-210 pro-
motes a  hypoxic phenotype and radioresistance 
of human lung cancer cell lines [18]. Meanwhile, 
Kai et al. reported that miR-210 is also involved 
in the regulation of hepatocellular carcinoma via  
HIF-1α and HIF-3α [19]. Moreover, McCormick  
et al. demonstrated that miR-210 is a  target of 
HIF-1 and HIF-2, and is closely correlated with the 
prognosis of patients with renal cancer [20]. Based 
on these findings, it can be supposed that miR-

210 plays a critical role in the hypoxia response. 
Zhang et al. revealed that expression of miR-210 
could be up-regulated under hypoxia by NF-κB 
transcriptional factor p50 in PE [21]. Both Gan et 
al. and Nikuei et al. identified that miR-210 and  
miR-155 might be potential diagnostic markers for 
PE [22, 23]. All these findings imply that miR-210 
also might play a crucial role in the pathogenesis of 
PE. However, the underlying mechanism remains 
unclear. Complying with the previously published 
studies, the present study identifies PE with a sig-
nificant increase in the expression of miR-210 [21, 
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24, 25]. Further analyses showed that the overex-
pression of miR-210 could significantly promote 
cell proliferation, migration, and invasion, while 
miR-210 inhibitor could significantly inhibit these 
behaviors of JAR cells. These findings indicate that 
hypoxia induces the elevation of miR-210 and pro-
motes the invasion of trophoblast cells, as well as 
the failure of arterial remodeling, leading to the 
occurrence and development of PE.

As an important member of the protein-tyro-
sine phosphatase (PTP) family, PTPN2 is involved 
in the regulation of T-cells and its related biolog-
ical process. Wiede et al. reported that deficiency 
of PTPN2 enhanced the response of B cells and  
T cells, as well as systemic inflammation and auto-
immunity [26]. Meanwhile, another study report-
ed that PTPN2 could suppress the proliferation of 
T-cells [27]. Moreover, Spalinger et al. document-
ed that PTPN2 could regulate the differentiation 
of CD4+ T cells, and inhibit inflammation in the 
intestine [28]. Recently, Kim et al. demonstrated 
that miR-210 promotes the proliferation and mi-
gration of stem cells derived from adipose tissue 
via downregulating PTPN2 [29]. Thus, the bio-func-
tion of PTPN2 was uncovered in the current study. 
The analytical results showed that expression 
of PTPN2 could be decreased by hypoxia, and  
miR-210 inhibitor could inhibit this downreg-
ulation, which was also identified by Adel et al. 
in PE [30]. Moreover, analyses of cell behaviors 
showed that si-PTPN2 could induce the prolifera-
tion, migration, and invasion of JAR cells, indicat-
ing that PTPN2 performed a negative role in the 
development of PE. However, miR-210 inhibitor 
could obviously suppress the effect of si-PTPN2 
or hypoxia on JAR cells, indicating that PTPN2 
might be a downstream target of miR-210 in the 
pathogenesis of PE. In addition, PDGFR is report-
ed to be common substrate for PTPN2 [31]. Then, 
the protein and phosphorylation levels of PDGFR 
were assessed, as well as Akt and Erk, which are in-
volved in the same signaling pathway. The results 
showed that the phosphorylation levels of PDGFR, 
Akt, and Erk were significantly increased by hypox-
ia treatment and si-PTPN2, but this was prevented 
by miR-210 inhibitor, indicating miR-210-PTPN2 
might regulate the development of PE via the PDG-
FR-Akt signaling pathway. However, the detailed 
mechanism still needs to be further explored.

Taken together, this study documented that 
miR-210 plays a  critical role in the development 
of PE via targeting PTPN2, which could inhibit the 
process of PE via the PDGFR-Akt pathway. Hence, 
both miR-210 and PTPN2 could serve as potential 
biomarkers and therapeutic targets of PE. There 
are some limitations that restrict the power of 
this study. First, the expression of miR-210 and 
PTPN2 was not examined in clinical samples due 

to the small sample size. Second, in vivo valida-
tion was not provided in this study owing to de-
ficiency of ethic authorization. Last but not least, 
the in-depth mechanism of miR-210 in PDGFR-Akt 
pathway was not well established. Therefore, fur-
ther exploration is still required to further reveal 
the mechanism of miR-210 and PTPN2 in PE. De-
spite these issues, this study provided some basic 
information on the process of PE. In conclusion,  
miR-210 expression could be significantly induced 
under hypoxia, but PTPN2 expression was obvi-
ously decreased under hypoxia, and these varia-
tions could significantly promote the proliferation, 
migration, and invasion of JAR cells. Downstream 
of miR-210, the effects of si-PTPN2 on JAR could 
be markedly suppressed by miR-210 inhibitor via 
the PDGFR-Akt signaling pathway. All of this ev-
idence indicates that miR-210 and PTPN2 might 
act as potential biomarkers and therapeutic tar-
gets for the diagnosis and treatment of PE. 
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